Phần lớn các nghiên cứu về tính chất cơ học của bê tông sử dụng cát biển (BTCB) kết luận ưu điểm của vật liệu này so với bê tông sử dụng cát sông (BTCS) truyền thống. Tuy nhiên, cũng có một số nghiên cứu cho kết quả ngược lại. Nội dung bài viết này trình bày kết quả nghiên cứu thực nghiệm cường độ chịu nén và kéo uốn của bê tông sử dụng cát biển thay thế một phần hoặc toàn bộ cát sông (CS).
Cát biển sử dụng trong nghiên cứu được khai thác ở biển TP. Tuy Hoà ở ba dạng: cát biển tự nhiên (CB); cát biển qua rửa trôi hai lần bằng nước nóng (CB2) và rửa trôi bằng dòng chảy sông trong thời gian 7 ngày (CB7). Kết quả nghiên cứu cho thấy, bê tông sử dụng CB phát triển cường độ sớm hơn so với BTCS. Ở 28 ngày tuổi, phụ thuộc vào tỉ lệ CB sử dụng mà cường độ chịu nén của bê tông phát triển khác nhau so với mẫu BTCS. Trong đó, bê tông sử dụng mẫu CB2 có cường độ chịu nén lớn nhất. Kết quả tương tự cũng được ghi nhận đối với cường độ chịu kéo uốn.
1. Đặt vấn đề
Trong những năm gần đây, việc khai thác nguồn CS quá mức để sản xuất bê tông phục vụ xây dựng cơ sở hạ tầng đã dẫn đến những hậu quả nghiêm trọng về môi trường trên toàn thế giới. Để giải quyết bài toán thiếu hụt cát phục vụ cho xây dựng và bảo vệ môi trường, nhiều nhà khoa học đề xuất sử dụng CB với trữ lượng lớn thay thế một phần CS để chế tạo bê tông [6, 8, 10, 16, 18]. Tuy nhiên, hàm lượng các hoá chất và tạp chất có trong CB là những yếu tố ảnh hưởng lớn đến các tính chất cơ - lý và cấu trúc của bê tông. Ngoài ra, thành phần hạt của CB cũng ảnh đến các tính chất của bê tông.
CB đã được sử dụng rộng rãi cho bê tông ở một số nước trên thế giới như Anh, Wales, Tây Ban Nha, Nhật Bản, Trung Quốc… [20]. Tuy nhiên, hiện nay trên thế giới chưa có tiêu chuẩn kỹ thuật và hướng dẫn sử dụng CB cho bê tông. Ngoài ra, CB ở các khu vực và vị trí khác nhau có thành phần các ion hoá chất gây hại và các tạp chất khác nhau, thêm vào đó cơ sở dữ liệu về nghiên cứu bê tông sử dụng CB còn hạn chế nên vấn đề nghiên cứu bê tông sử dụng CB vẫn còn là một hướng nghiên cứu mang tính thời sự và được nhiều nhà khoa học trong nước và quốc tế quan tâm.
Một trong những nguyên nhân chính cản trở việc sử dụng CB cho bê tông là hàm lượng muối trong CB lớn. Khi sử dụng trực tiếp CB cho bê tông, các tạp chất và lượng muối có trong CB sẽ ảnh hưởng trực tiếp và gây hại cho bê tông như: độ bền của bê tông giảm, bê tông có thể bị trương phồng và kết tủa, đồng thời hiện tượng giãn nở sunfat và các hậu quả bất lợi khác có thể xảy ra [11]. Các ion clorua (Cl- ) có trong CB theo thời gian sẽ gây ăn mòn cốt thép đặt trong bê tông [13]. Do đó, để đảm bảo độ bền cho bê tông và kết cấu bê tông cốt thép, cần thiết phải giảm hàm lượng các ion gây hại và các tạp chất có trong CB đến ngưỡng an toàn.
Trong nước, nhiều nhà nghiên cứu đã tiến hành nghiên cứu sử dụng CB cho bê tông. Nguyễn Khánh Sơn và Nguyễn Quang Thiết [17] sử dụng cát ở mép biển Vũng Tàu trộn với đá nghiền để làm cốt liệu cho vữa và bê tông từ xi măng bền sunphat. CB sử dụng có mô đun độ lớn 1.1, hàm lượng Cl- và SO32- tương ứng là 0.798% và 0.239%. Kết quả nghiên cứu của các tác giả cho thấy, quá trình phát triển cường độ của vữa xi măng sử dụng CB chưa đạt yêu cầu và thấp hơn mẫu đối chứng, còn đối với bê tông, cường độ của BTCB và mẫu đối chứng chênh nhau không nhiều. Gần đây, kết quả nghiên cứu cường độ chịu nén của bê tông sử dụng CB Phú Quốc thay thế một phần CS trong các điều kiện bảo dưỡng khác nhau của các tác giả Trần Ngọc Thanh và cộng sự [18] cho thấy, khi thay thế toàn bộ CS bằng CB thì cường độ chịu nén của bê tông có thể tăng đến 35%, ngoài ra mẫu BTCB bảo dưỡng trong nước ngọt có cường độ chịu nén cao hơn trường hợp bảo dưỡng trong nước mặn từ 2% đến 34%.
Việc sử dụng CB để thay thế CS cho bê tông cũng nhận được sự quan tâm của nhiều nhà khoa học trên thế giới. Sampath và Mohankumar [16] kết luận rằng, sau hai lần rửa trôi, hàm lượng các ion gây hại đã giảm xuống ngưỡng an toàn cho bê tông. Kết quả nghiên cứu thực nghiệm của nhiều nhà khoa học trên thế giới cho thấy, thành phần hạt và hàm lượng các ion gây hại trong CB ở các khu vực và các vùng khác nhau dao động trong phạm vi rộng. Kết quả nghiên cứu tổng quan về bê tông sử dụng CB của Nishida và cộng sự [14] cho thấy, phần lớn các nghiên cứu về BTCB kết luận ưu điểm của loại cốt liệu này. Katano và cộng sự [12] kết luận rằng, cường độ chịu nén của bê tông sử dụng CB ở 7 ngày tuổi lớn hơn 60% so với bê tông sử dụng CS. Theo thời gian, tỉ lệ tăng cường độ của BTCB so với BTCS giảm xuống. Trái ngược với kết luận của Katano, Deepak và Naidu [7] chỉ ra rằng, cường độ của BTCB giảm 50% so với BTCS.
Để giảm các hàm lượng ion gây hại cho bê tông và các tạp chất có trong CB, nhiều nhà nghiên cứu đề xuất nhiều phương pháp như: rửa trôi bằng nước nóng; rửa trôi bằng hoá chất; rửa trôi bằng nước thường; rửa trôi bằng nước mưa… [9, 19]. Gầy đây, Kartheek Thunga và T. Venkat Das [19] nghiên cứu cường độ chịu nén và kéo của bê tông sử dụng CB và bê tông CB qua xử lý rửa trôi để thay thế một phần hoặc hoàn toàn CS. Kết quả nghiên cứu của các tác giả cho thấy, khi thay thế CS bằng CB và CB qua xử lý đều làm tăng cường độ chịu nén và kéo của bê tông. Đặc biệt, tỉ lệ tăng cường độ của bê tông sử dụng 100% CB so với BTCS là lớn nhất.
Kết quả phân tích tổng quan cho thấy, CB là vật liệu tiềm năng để thay thế CS cho bê tông. Tuy nhiên, hiện nay cơ sở dữ liệu nghiên cứu về vấn đề này vẫn còn hạn chế, đặc biệt là đối với CB ở Việt Nam. Bài báo này trình bày kết quả nghiên cứu thực nghiệm cường độ chịu nén, cường độ chịu kéo uốn của bê tông sử dụng CB2 và CB7. Kết quả nghiên cứu đối với CB được so sánh với BTCS có cấp phối tương ứng.
2. Vật liệu và phương pháp
2.1. Vật liệu sử dụng
Trong nghiên cứu này, tác giả sử dụng các loại vật liệu sau:
Xi măng: Kaito PCB40;
Cát sông: được khai thác ở nguồn sông Ba, thành phần hạt của CS theo TCVN 7572-2:2006 [3] được thể hiện trong Bảng 1;
Đá dăm: có Dmax=20 mm được khai thác tại các mỏ đá trên địa bàn tỉnh Phú Yên;
Nước: từ giếng khoan;
Cát biển: mẫu CB sử dụng trong nghiên cứu này được khai thác tại bờ biển TP. Tuy Hoà, tỉnh Phú Yên. Vị trí lấy mẫu CB: dưới nước, cách mép nước 1 mét và ở độ sâu từ 0.2 mét. Kết quả phân tích thành phần hạt của CB theo TCVN 7572-2:2006 [3] được thể hiện trong Bảng 1. Trong nghiên cứu này, CB được sử dụng 03 dạng sau:
- Cát biển nguyên thuỷ, cát biển sau khi thu thập được xử lý sơ bộ để loại bỏ những tạp chất có thể như vỏ sò, rác…;
- Cát biển rửa trôi 2 lần bằng nước nóng 90ºC. Quy trình mỗi mẻ rửa cát biển như sau: cát biển được thu thập và xử lý sơ bộ và phơi khô, sau đó trộn 10 kg cát biển với nước nóng 90ºC theo tỉ lệ 1:2 và khuấy bằng máy trộn sơn cầm tay (Makita UT2204) trong thời gian 5 phút sau đó đổ nước rửa lần 1 và tiến hành rửa lần 2;
- Cát biển được rửa trôi bằng cách tận dụng dòng chảy sông Ba trong 7 ngày đêm để giảm hàm lượng clorua đến mức cho phép đối với bê tông). Theo đó, cát biển được đóng thành từng bao nhỏ với khối lượng 30 kg và ngâm trong dòng chảy sông Ba cách mép bờ 2 mét và cách cửa biển 2km, thời gian rửa vào tháng 3 (mùa khô) và vận tốc dòng chảy sông ước tính 0.6 m/s. Kết quả phân tích hàm lượng clorua trong CB theo TCVN 7572-15:2006 [5] được thể hiện trong Bảng 2.
Qua kết quả lượng sót tích lũy trên sàng của CS và CB (Bảng 1) có thể phân loại cả hai loại cát trên đều thuộc cát thô, đồng thời kết quả thí nghiệm thành phần hạt của CS và CB nhận thấy thành phần hạt của hai vật liệu trên là khá tương đồng và đáp ứng yêu cầu kỹ thuật đối với cát cho bê tông. Ngoài ra, từ kết quả phân tích theo TCVN 7572-4: 2006 [4] nhận được khối lượng thể tích của CS và CB tương ứng là 1510g/lít và 1457g/lít.
2.2. Chương trình thí nghiệm và cấp phối bê tông Trong nội dung bài báo này, tác giả tiến hành nghiên cứu sự phát triển cường độ chịu nén của bê tông qua 3 ngày, 7 ngày và 28 ngày tuổi và cường độ chịu kéo khi uốn của bê tông sử dụng CB để thay thế CS. Nghiên cứu thực nghiệm được tiến hành dựa trên 2 cấp phối bê tông chuẩn sử dụng CS với mác bê tông dự kiến là M200 (Nhóm mẫu M200) và M300 (Nhóm mẫu M300), độ sụt dự kiến 12 cm. Từ các cấp phối bê tông chuẩn tiến hành thay thế CS bằng CB với tỉ lệ lần lượt: 50% và 100%. Các cấp phối bê tông sử dụng trong nghiên cứu được thể hiện chi tiết trong Bảng 3. Cường độ chịu nén của mỗi cấp phối được xác định dựa vào kết quả thí nghiệm 05 mẫu lập phương 150×150×150 mm theo TCVN 3118:1993 [1], cường độ chịu kéo uốn của mỗi cấp phối được xác định dựa vào kết quả thí nghiệm 05 mẫu lăng trụ 150×150×600 mm theo TCVN 3119:1993 [2].
Sau khi đổ, các mẫu được bảo dưỡng trong 3 ngày, 7 ngày và 28 ngày tuân theo các tiêu chuẩn hiện hành. Sau thời gian bảo dưỡng đến các ngày tuổi dự kiến, các mẫu được thí nghiệm tại phòng thí nghiệm trường Đại học Xây dựng miền Trung. Mẫu lập phương được thí nghiệm trên máy nén có thang đo cực đại 100 tấn, mẫu lăng trụ để thí nghiệm kéo uốn được thí nghiệm trên máy nén có thang đo cực đại 20 tấn (Hình 1).
(Còn nữa)Tài liệu tham khảo
1. TCVN 3118:1993 (1993), "Bê tông nặng - phương pháp xác định cường độ nén", Việt Nam.
2. TCVN 3119:1993 (1993), "Bê tông nặng - Phương pháp xác định cường độ kéo khi uốn", Việt Nam.
3. TCVN 7572-2:2006 (2006), "Cốt liệu cho bê tông và vữa - Phương pháp thử - Phần 2: Xác định thành phần hạt", Việt Nam.
4. TCVN 7572-4:2006 (2006), "Cốt liệu cho bê tông và vữa - Phương pháp thử - Phần 4: Xác định khối lượng riêng, khối lượng thể tích và độ hút nước", Việt Nam.
5. TCVN 7572-15:2006 (2006), "Cốt liệu cho bê tông và vữa - Phương pháp thử - Phần 15: Xác định hàm lượng clorua", Việt Nam.
6. Trần Văn Châu (2018), Nghiên cứu sản xuất bê tông từ cát biển, nước biển khu vực Nha Trang-Khánh Hòa , Trường Đại học ách hoa-Đại học Đà N ng.
7. W. Sai Deepak (2015), "Effect on compressive strength of concrete using sea sand as a partial replacement for fine aggregate". International Journal of Research in Engineering and Technology, 04(06): p. 180-183.
8. T. Dhondy, A. Remennikov, and M. Neaz Sheikh (2020), "Properties and Application of Sea Sand in Sea Sand and Seawater Concrete". Journal of Materials in Civil Engineering, 32(12): p. 04020392.
9. Tanaz Dhondy, Alex Remennikov, and M. Neaz Shiekh (2019), "Benefits of using sea sand and seawater in concrete: a comprehensive review". Australian Journal of Structural Engineering, 20(4): p. 280-289.
10. Trần Tuấn Hiệp và Võ Xuân Lý (2002), "Nghiên cứu sử dụng cát biển và nước biển và nước nhiễm mặn làm bê tông xi măng trong xây dựng đường ô tô và công trình phòng hộ ven biển vùng đồng bằng Nam bộ". Tạp chí Giao thông Vận tải, 6.
11. M. Karthikeyan and V. Nagarajan (2017), "Chloride Analysis of Sea Sand for Making Concrete". National Academy Science Letters, 40(1): p. 29-31.
12. K. Katano, et al. (2010), "Properties and Applications of Concrete Made with Sea Water and Un-washed Sea Sand". null. Vol. null. null.
13. Phạm Văn Khoan (2010), "Tình trạng ăn mòn bê tông cốt thép ở vùng biển Việt Nam và một số kinh nghiệm sử dụng chất ức chế ăn mòn canxi nitrít . Tạp chí Khoa học công nghệ xây dựng (IBST), 2.
14. Takahiro Nishida, et al. (2013), "Some Considerations for Applicability of Seawater as Mixing Water in Concrete". Journal of Materials in Civil Engineering, 27: p. B4014004.
15. N. Poonkuzhali, A. Nivedhitha, and B.S. Sughashini (2018), "Experimental Investigation on Split Tensile and Compressive Strength of Concrete Replacing Fine Aggregate with Sea Sand and Copper Slag". SSRG International Journal of Civil Engineering (SSRG - IJCE), Volume 5(Issue 4): p. 4.
16. B. Sampath and G. Mohankuma (2016), "Preliminary Study on the Development of Concrete with Sea Sandas Fine Aggregate". Indian Journal of Science and Technology, 9.
17. Nguyễn Khánh Sơn (2014), Sử dụng cát biển làm thành phần cốt liệu trong chế tạo bê-tông, in Hội nghị Khoa học và Công nghệ lần thứ 2 Tài nguyên, năng lượng và môi trường vì sự phát triển bề vững". Đại học Quốc gia TP.Hồ Chí Minh: Việt Nam. p. 764-770.
18. Trần Ngọc Thanh, Nguyễn Nhật Huy và Dương Minh Triều (2020), Đánh giá khả năng chịu nén của bê tông sử dụng cát biển trong các điều kiện bảo dưỡng khác nhau". Tạp chí Khoa học Công nghệ Xây dựng (KHCNXD)-ĐHXD, 14(1V): p. 60-72.
19. Kartheek Thunga and Venkat Das T (2020), "An experimental investigation on concrete with replacement of treated sea sand as fine aggregate". Materials Today: Proceedings, 27: p. 1017-1023.
20. Jianzhuang Xiao, et al. (2017), "Use of sea-sand and seawater in concrete construction: Current status and future opportunities". Construction and Building Materials, 155: p. 1101-1111. VLXD.org (TH/ Tạp chí KHCNXD)